

ATLAS PIXEL SYSTEM MODULE ASSEMBLY

M. Gilchriese Lawrence Berkeley National Laboratory

March 12, 1999

Pixel Module

Items Covered in This Talk

- Bump deposition(or receiving metal) on IC and detector wafers
- Dicing, thinning and possibly backside metallization of these wafers
- Flip chip assembly to produce what we call "bare modules"
- Probing of bare modules(not done yet production)
- Mounting flex hybrids with components on module
- Module burn in and testing
- Principal interfaces
 - Module attachment to mechanical structure
 - Cabling(power and optical links)

Assembly Process - Example

	<u>ICs</u>		<u>Detectors</u>		<u>Flex</u>
Yield(%)	Step	Yield(%)	Step	Yield(%)	Step
30.0%	Fab	100.0%	Fab	80.0%	Fab
99.9%	Ship	99.9%	Ship	99.9%	Ship
97.0%	Probe	90.0%	Probe	98.6%	Cut (from CLEOIII)
99.9%	Ship	99.9%	Ship	99.9%	Ship
97.0%	Bump deposition	97.0%	Bump deposition	100.0%	Probe
99.9%	Ship	99.9%	Ship	99.9%	Ship
99.5%	Inspection(bump yield)	92.3%	Inspection(bump yield)	95.0%	Mount components
99.9%		99.9%	Ship	99.9%	
95.0%	Thin and metallize	97.0%	Dice	99.9%	Wire bond MCC (from CLEOIII
99.9%	Ship	99.0%	Sort	97.0%	Probe/burn-in
97.0%	Dice	99.9%		99.9%	Ship
97.0%		99.0%	Inspect		
99.9%	•				
99.0%	Inspect				72%
Yield(%)	25%		76%		per flex
	per die		per tile		
		Yield(%)			
			Flip chip/die		
			Flip chip/module		
		99.9%			
			Inspect		
		99.9%			
			Probe bare module		
		99.9%	•		
			Attach flex		
			Wire bond FE's (with repair)		
			Attach pwr/optics		
		99.9%	•		
			Test/burn in		
		99.9%		M. (Silchriese
			71%	U.S	U.S ATLAS Internal Review
			per module		

Pixel Modules

Module with flex hybrid and controller chip on PC board

M. Gilchriese U.S. ATLAS Internal Review March 1999

Bump Bonding

- Solder or indium bumps have been used so far in our prototype program.
- Different process flow for solder and indium and some small variations for fixed metal between vendors

Vendors
AIT(indium)¹
Alenia(indium)²
Boeing(indium)^{2,3}
GEC(solder)¹
IZM(solder)²
Sofradir(indium)⁴

¹ Used by others

² ATLAS parts made

³ No longer active

⁴ Contacts in process

Bump Bonding- What Do We Know?

- Both indium and solder successful for prototypes but some concerns about indium(high resistance from oxides?)
- Defect rate for bump deposition is roughly 10⁻⁵ 10⁻⁴ for both metals
- Visual inspection appears to be adequate to measure this
- Defect rate for flip chip assembly has varied greatly for prototypes and between vendors from about 10⁻⁴ 10⁻²
- X-ray inspection established with two vendors(IZM and here in Bay Area) and is adequate to measure flip-chip yield
- Thinning of bumped IC wafers to 150 microns and subsequent flip chip assembly has been demonstrated(on one 16 chip module) for indium only at the moment.
- Dicing of bumped wafers demonstrated with multiple vendors.
- Irradiated bumped(indium) detectors work. Bumping does not appear to affect detector properties adversely
- Tensile and shear strength measured. Creep studied. But all with low statistics.
- Preliminary price enquiry made to many vendors. Large differences in price(factor of 2)

Examples

X-ray inspection of solder bump 16 chip module from IZM

Flip-chip assembly of single detector to IC

M. Gilchriese U.S. ATLAS Internal Review March 1999

Bump Bonding - What Don't We Know?

- Should we choose one technology solder or indium? Or should we allow both(equivalent to having two vendors?)
- Irradiated detectors with solder bumps OK?
- Yield with good confidence for all steps
- Impact of possible need for backside IC metallization on process steps
- Strength of bonds with good statistics
- Production rate for both wafer bump deposition or flip-chip assembly.
- Do we need more than one vendor for schedule reasons?
 Clearly desirable to reduce risk.
- QA program must exist but we haven't come close to implementing this with vendors. Are agreed that substantial collaboration involvement is required.

Bump Bonding Program

- Build many more modules as many as we can afford
- Goal is to build 50+ active modules with prototype 2 sensors and FE-B and later FE-D/H chips by early 2000.
- This will be done at IZM and Alenia. Third vendor under consideration but not decided yet.
- 2nd generation dummy module program not yet fixed. Decide in June.
- Stay in touch with other programs(ALICE, FNAL pixels)
- Detailed schedule up to production is (just) under development (primarily by me) following selection of flex module baseline 3 weeks ago

Module Assembly

- Only two flex modules have been assembled to date, one at Oklahoma and one at LBL.
- A few more with flex v1.0 will be made in Europe shortly.
- These have been and will be made to address electronics performance issues not module assembly.
- Production aspects of module assembly simply have not yet been addressed.
- Will begin to address these issues in about June of this year in preparation to prototype assembly tooling and procedures with modules made from 2nd prototype sensors and FE-B(first) and then FE-D

 Chips.
 M. Gilchriese

U.S. ATLAS Internal Review March 1999

Module Assembly Plan

- Within the U.S., LBNL is responsible for module assembly but this relies on delivery of tested parts.
- We plan to have either direct responsibility in US or defined point of contact for all aspects during the development phase(through about mid-2000). We expect every step to also occur in Europe so coordination is important.
 - IC wafer probing(Einsweiler, Richardson, + labor)
 - Sensor wafer testing(Seidel, Hoeferkamp, UNM postdoc)
 - Bump deposition and inspection(Gilchriese)
 - Dicing, thinning and metallization(Gilchriese, Palaio)
 - Flex production and testing(Skubic, Boyd, Timm, + labor)
 - Flip-chip assembly and inspection(X-ray)(Gilchriese + labor)
 - Bare module probing(Einsweiler, Richardson, LBL postdoc, LBNL engineering)
 - Module assembly tooling(Goozen, Zizka)
 - Module assembly(Goozen, Zizka + labor)
 - Assembled module testing(Einsweiler, Richardson, LBL postdoc, LBNL engineering initially, but migrates to other groups)
 - PPL upgrades and software(Richardson, Fasching, UW supported engineering)
 - Optical interface/tests(when relevant)(Gan, Kagan, OSU engineering)
 - Power cable interface/tests(Anderssen + testing group)
 - Module attachment interface(Anderssen)
 - Overall coordination(Gilchriese)